
CFI-Stream: Mining Closed Frequent Itemsets in Data
Streams

Nan Jiang

School of Computer Science
The University of Oklahoma

Norman, OK 73019, USA
nan_jiang@ou.edu

Le Gruenwald
School of Computer Science
The University of Oklahoma

Norman, OK 73019, USA
ggruenwald@ou.edu

ABSTRACT
Mining frequent closed itemsets provides complete and
condensed information for non-redundant association rules
generation. Extensive studies have been done on mining frequent
closed itemsets, but they are mainly intended for traditional
transaction databases and thus do not take data stream
characteristics into consideration. In this paper, we propose a
novel approach for mining closed frequent itemsets over data
streams. It computes and maintains closed itemsets online and
incrementally, and can output the current closed frequent itemsets
in real time based on users’ specified thresholds. Experimental
results show that our proposed method is both time and space
efficient, has good scalability as the number of transactions
processed increases and adapts very rapidly to the change in data
streams.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Data stream, frequent closed itemsets, association rules.

1. INTRODUCTION
Frequent closed itemsets provide complete and condensed
information for non-redundant association rules generation.
Recently, much research has been done on closed itemsets mining
[9, 11-13], but it is mainly for traditional databases where
multiple scans are needed, and whenever new transactions arrive,
additional scans must be performed on the updated transaction
database; therefore, they are not suitable for data stream mining.
A data stream is an ordered sequence of transactions that arrives
in a timely order. Different from data in traditional static
databases, data streams have the following characteristics. First,
they are continuous, unbounded, and usually come with high
speed. Second, the volume of data streams is large and usually
with an open end. Third, the data distribution in streams usually
changes with time.

As the number of applications on mining data streams grows

rapidly, such as web transactions, telephone records, and network
flows, much research on how to get frequent patterns in a data
stream environment has been conducted. In [2, 7, 10], the authors
propose algorithms to find frequent itemsets over the entire
history of data streams. In [3, 5, 8], different sliding window
models are used to find recently frequent itemsets in data streams.
These algorithms focus on mining frequent itemsets, instead of
closed frequent itemsets, with one scan over entire data streams.

In [4], Chi et al propose the Moment algorithm to mine
closed frequent itemsets over a data stream sliding window. The
algorithm maintains a dynamically selected set of itemsets which
includes four types of nodes: infrequent gateway nodes,
unpromising gateway nodes, intermediate nodes, and closed
nodes. For each node, the itemset itself, node type, support and
sum of the ids of the transactions in which the itemset occurs
(tid_sum) are stored. These selected itemsets form a boundary
between closed frequent itemsets and the rest of the itemsets.
When a new transaction arrives, it checks the closed frequent
itemsets stored in a hash table with its support and tid_sum
information to decide its node type according to the node
properties and incrementally updates the associated nodes’
information. Moment judges the closed itemsets indirectly
through node property checking and excludes them from the other
three types of boundary nodes stored in the data structure. It
stores much more information other than the current closed
frequent itemsets, which consumes much memory, especially
when the support threshold is low. Furthermore, the exploration
and node type checking are time consuming.

In this study, we propose an algorithm, called CFI-Stream, to
directly compute closed itemsets online and incrementally without
the help of any support information. Nothing other than closed
itemsets is maintained in our derived data structure. When a new
transaction arrives, it performs the closure checking on the fly;
only associated closed itemsets and their support information is
incrementally updated. This achieves both time and space
efficiency, especially when a dataset contains highly correlated
transactions. The current closed frequent itemsets can be output in
real time based on any user’s specified thresholds. We then
conduct simulation experiments using synthetic data sets to
evaluate the performance of our proposed algorithm.

The rest of this paper is organized as follows. Section 2
formally defines the concept of closed itemsets and describes the
notations to be used throughout the paper. Section 3 presents our
proposed CFI-Stream algorithm. The performance evaluation is
depicted in Section 4. Finally, Section 5 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'06, August 20-23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00.

592

Research Track Poster

2. PRELIMINARY CONCEPTS
Let I = {i1, i2, …, in} be a set of n elements, called items. A subset
X ⊆ I is called an itemset. A k-subset is called a k-itemset. Each
transaction t is a set of items in I. Given a set of transactions T,
the support of an itemset X is the percentage of transactions that
contain X.

Let T and X be subsets of all the transactions and items
appearing in a data stream D, respectively. The concept of a
closed itemset is based on the two following functions, f and g:
f(T) = {i ∈ I | ∀ t ∈ T, i ∈ t} and g(X) = {t ∈ D | ∀ i ∈ X, i ∈ t}.
Function f returns the set of itemsets included in all transactions
belonging to T, while function g returns the set of transactions
containing a given itemset X.
Definition 1 An itemset X is said to be closed if and only if C(X)
= f(g(X)) = f•g(X) = X where the composite function C = f•g is
called a Galois operator or a closure operator.

From the above discussion, we can see that a closed itemset
X is an itemset whose closure C(X) is equal to itself (C(X) = X).
The closure checking is to check the closure of an itemset X to
see whether or not it is equal to itself, i.e. whether or not it is a
closed itemset.

3. THE CFI-STREAM ALGORITHM
In this section, we present our proposed CFI-Stream algorithm
and in-memory data structure, called DIrect Update (DIU) tree, to
perform the closure checking online over a data stream sliding
window. We first give an overview of CFI-Stream. Then, we
discuss the conditions that we need to check for closed itemsets
and how we check for them when performing addition and
deletion operations on the DIU tree. Based on this, we develop an
online algorithm to discover and incrementally update closed
itemsets.

3.1 Algorithm Overview
When a transaction arrives or leaves the current data stream
sliding window, the algorithm checks each itemset in the
transaction on the fly and updates the associated closed itemsets’
supports. Current closed itemsets are maintained and updated in
real time in the DIU tree. The closed frequent itemsets can be
output at any time at users’ specified thresholds by browsing the
DIU tree.

We use a lexicographical ordered DIU tree to maintain the
current closed itemsets. Each node in the DIU tree represents a
closed itemset. There are k levels in the DIU tree, each level i
stores the closed i-itemsets, where k is the maximum length of the
current closed itemsets. Each node in the DIU tree stores a closed
itemset, its current support information, and the links to its
immediate parent and children nodes. Figure 1 illustrates the DIU
tree after the first four transactions arrive. The support of each
node is labeled in the upper right corner of the node itself. The
figure shows that currently there are 4 closed itemsets, C, AB,
CD, and ABC in the DIU tree, and their associated supports are 3,
3, 1, and 2.

tid

1

2

3

4

items

C, D

A, B

A, B, C

A, B, C

Φ

AB3 CD1

ABC2

tim
eline

C3

Figure 1. The lexicographical ordered direct update tree

Different from previous closure checking techniques which
require multiple scans over data [9, 11-13], our proposed method
performs the closure checking on the fly with only one scan over
data streams. It updates only the supports of the associated closed
itemsets in the DIU tree online, which reduces the computation
time and provides real time updated results. Our algorithm is an
incremental algorithm where we check for closed itemsets and
update their associated supports based on the previous mining
results. This is more efficient as compared with mining
approaches that rescan and regenerate all closed itemsets when a
new transaction arrives.

Compared with other data stream mining techniques [4, 8,
10], we store only the information of current closed itemsets in
the DIU tree, which is a compact and complete representation of
all itemsets and their support information. The current closed
frequent itemsets can be output in real time based on users’
specified thresholds by browsing the DIU tree. Also, our
algorithm handles the concept-drifting problem in data streams by
storing all current closed itemsets in the DIU tree from which all
itemsets and their support information can be incrementally
updated. We discuss the update of the DIU tree and the closure
checking procedure for addition and deletion operations in
Sections 3.2 and 3.3.

3.2 Add a Transaction to the DIU Tree
In this subsection, we discuss the update and maintenance of the
DIU tree when a new transaction arrives and its closure check.

3.2.1 Conditions to Check for Closed Itemsets
First, we identify and prove the following conditions in which we
need to check whether an itemset is closed or not when a new
transaction t arrives in the current sliding window. Condition 1:
when the newly arrived transaction t is in the original transaction
set, if the largest itemset X it contains is not currently in the DIU
tree, we need to check for all X’s subsets Y, which are in the
original transaction set to see whether they are closed or not.
Condition 2: when the newly arrived transaction t is not in the
original transaction set, for each its subset Y, if Y is in the
original transaction set, we need to check whether it is closed or
not. Below we prove why we only need to check for closed
itemsets in the above two conditions. We will use the Lemma 1
and Corollary 1 in our following proofs. The proof of Lemma 1 is
given in [9]. Corollary 1 is derived from Lemma 1.
Lemma 1 Given an itemset X and an item i ∈ I, g(X) ⊆ g(i) ⇔ i
∈ C(X).
Corollary 1 Assume CT(X) is X’s closure within transaction set
T. If CT(X) = X and Y ⊂ X and CT(Y) ⊃ Y, given an item i,
where i ∈ CT(Y), i ∉ Y, then we have i ∈ X and CT(Y) ⊆ X.

When a new transaction t in the data stream arrives, either t
is or is not included in the original transaction set. Below, we
discuss the update and maintenance rules under these two
conditions. In the following proof, we assume X and Y are
itemsets, T1 is the original set of transactions, T2 is the set of
transactions after t arrives, CT1(X) is X’s closure in transaction set
T1, and CT2(Y) is Y’s closure in transaction set T2.
Case 1: When t is in the original transaction set T1
For any new coming transaction t with the largest itemset X that
already exists in the original transaction set T1, we have gT1(X) ≠
φ. When gT1(X) ≠ φ, for any itemset Y, gT1(Y) = φ . If Y ⊂ X ⇒
gT1(Y) ⊃ gT1(X) ≠ φ. This is a contradiction with gT1(Y) = φ .
Therefore this condition does not happen. If Y ⊄ X ⇒ gT2(Y) =

593

Research Track Poster

gT1(Y) = φ. Thus, we do not need to discuss cases when gT1(Y) =
φ. When gT1(X) ≠ φ and gT1(Y) ≠ φ, we examine cases according
to the following conditions: Y ⊄ X and Y ⊆ X.
Case 1.A: When Y is a subset of X
When Y is a subset of X, Y ⊆ X, we divide it into two sub
conditions to analyze: X is or is not in the DIU tree.
Case 1.A.1: When X is in the DIU Tree
When X is in the DIU tree, it is a closed itemset, therefore CT1(X)
= X. We have the following Lemmas 2 and 3. From these two
lemmas, we show that if a closed itemset X which already exists
in the DIU tree arrives, for any itemset Y, Y ⊆ X, if Y is
originally closed, it will remain closed; if Y is originally
unclosed, Y will remain unclosed, and we only need to update Y’s
support. Therefore, for most of the existing closed itemsets, we do
not need to update the DIU tree structure; we simply update their
supports, which consume a small amount of time.
Lemma 2 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊆ X and
CT1(Y) = Y, then we have CT2(Y) = Y.
Lemma 3 Given T2 = T1 ∪ {X}, if CT1(X) = X and Y ⊂ X and
CT1(Y) ⊃ Y, then we have CT2(Y) ⊃ Y.
Case 1.A.2: When X is not in the DIU Tree
When X is not in the DIU tree, it is not a closed itemset, therefore
CT1(X) ⊃ X. Similarly, we have the following Lemmas 4 and 5.
From Lemma 4, we show that if a new closed itemset which is not
originally in the DIU tree arrives and if its subsets are already in
the DIU tree, they will remain closed, and thus we simply need to
update their supports. From Lemma 5, we show that if a new
closed itemset which is not originally in the DIU tree arrives, then
we need to add it as a new closed itemset to the DIU tree.
Lemma 4 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y ⊂ X and
CT1(Y) = Y, then we have CT2(Y) = Y.
Lemma 5 Given T2 = T1 ∪ {X}, if CT1(X) ⊃ X and Y = X, then
we have CT2(Y) = Y= X.
Case 1.B: When Y is not a subset of X
When Y is not a subset of X, Y ⊄ X, we have the following
Lemma 6. In Lemma 6, we show that if Y is not a subset of X,
Y’s closure does not change. That is to say that if Y is an
unclosed itemset before X arrives, then Y will remain unclosed
after X arrives; and, if Y is a closed itemset before X arrives, then
Y will remain closed after X arrives. Thus, the DIU tree structure
does not need to be updated, and we only need to update Y’s
support.
Lemma 6 Given T2 = T1 ∪ {X}, if Y ⊄ X, then we have CT2(Y)
= CT1(Y).
Case 2: When t is not in the original transaction set T1
For any new coming transaction t with the largest itemset X that
has not already appeared in the original transaction set T1, we
have gT1(X) = φ. We discuss two sub cases according to the
following conditions: Y ⊄ X and Y ⊆ X.
Case 2.A: When Y is a subset of X
When Y is a subset of X, Y ⊆ X, we divide it into two sub
conditions to discuss: Y exists in the original transaction set T1 or
Y does not exist in the original transaction set T1.
Case 2.A.1: When Y is in the original transaction set T1
When Y is already in the original transaction set T1, then gT1(Y) ≠
φ. Because Y ⊆ X, we have gT2(Y) = gT1(Y) ∪ {X}. Therefore,
CT2(Y) = CT1(Y) ∩ {X}. We will perform the closure checking to
decide Y’s closure, which will be discussed in Section 3.2.2.
Case 2.A.2: When Y is not in the original transaction set T1

When Y does not exist in the original transaction set T1, then
gT1(Y) = φ. We have the following Lemma 7. In this lemma, we
prove that when Y is a subset of X, if Y = X, then Y is a closed
itemset in transaction set T2; and if Y ⊂ X, then Y is not a closed
itemset in transaction set T2.
Lemma 7 Given T2 = T1 ∪ {X}, if Y = X, then we have CT2(Y)
= Y; if Y ⊂ X, then we have CT2(Y) ⊂ Y.
Case 2.B: When Y is not a subset of X
When Y is not a subset of X, Y ⊄ X, we divide it into two sub
conditions to discuss: Y is in the original transaction set T1 or Y
is not in the original transaction set T1.
Case 2.B.1: When Y is in the original transaction set T1
If Y is already in the original transaction set T1, then gT1(Y) ≠ φ.
We have the following Lemma 8. Similar to Lemma 6, in this
lemma we prove that when Y is not a subset of X, Y’s closure
does not change in transaction set T2.
Lemma 8 Given T2 = T1 ∪ {X}, if Y ⊄ X, then CT2(Y) = CT1(Y).
Case 2.B.2: When Y is in the original transaction set T1
If Y is not in the original transaction set, then gT1(Y) = φ. If Y ⊄
X, we have gT2(Y) = gT1(Y) = φ, which is meaningless to discuss.

From the above proofs, we can see that when a new
transaction arrives, for most cases, the DIU tree structure does not
change and we only need to update the associated itemsets’
supports, which thus reduces the processing costs. There are only
two cases that we need to perform the closure check: 1) when
gT1(X) ≠ φ, gT1(Y) ≠ φ, CT1(X) ⊃ X, and Y ⊂ X; and 2) when
gT1(X) = φ, gT1(Y) ≠ φ, and Y ⊆ X. We will discuss how to check
for closed itemsets in the following section.

3.2.2 Closure Checking for Addition
The CFI-Stream algorithm checks whether an itemset is closed or
not on the fly and incrementally with one scan of data streams.
Below, we discuss the checking procedure when performing the
addition operation on the DIU tree. In the following Theorem 1,
we show that for any coming unclosed itemset Y, we can always
find one and only one closed itemset in the DIU tree equal to Y’s
closure, such that Xc = C(Y).
Theorem 1 For any itemset Y, if C(Y) ⊃ Y and g(Y) ≠ φ, then we
can always find one and only one closed itemset Xc ∈ C, where C
is a set of existing closed itemsets that satisfies C(Y) = Xc, where
Y ⊂ Xc.

From Theorem 1, we know that for any itemset Y, C(Y) ⊃
Y, we can find Xc0 with a minimum number of items in it and Xc0
⊃ Y. For any other Xc1 ⊃ Y, from the above discussion we know
that g(Xc0) ⊃ g(Xc1). Because Y ⊂ Xc0, then g(Y) ⊇ g(Xc0) ⊃
g(Xc1). To find Xc ⊆ C(Y), we have g(Xc) = g(Y); only Xc0 will
fulfill this requirement. In this way, C(Y) can be found in the
original transaction set T1. Below, we show how we use this C(Y)
to check if Y is a closed itemset in transaction set T2 after X
arrives.
Corollary 2 Given T2 = T1∪{X}, if CT1(X) ⊃ X and gT1(Y)≠φ, Y
⊆ X, CT1(Y) ⊃ Y, (CT1(Y)/Y)∩X = φ, then we have CT2(Y) = Y.

From Corollary 2, we derive a way to check whether Y is
closed in transaction T2 or not. If (CT1(Y)/Y) ∩ {X} = φ, then Y
is a closed itemset in T2. We use this condition to perform the
closed itemset checking on the fly when a new transaction in the
data streams arrives.

594

Research Track Poster

3.3 Delete a Transaction in DIU Tree
In this subsection, we discuss the update and maintenance of the
DIU tree for the deletion operation, which occurs when a
transaction leaves the sliding window and its closure check.

3.3.1 Conditions to Check for Closed Itemsets
First, we identify and prove the following condition in which we
need to check whether an itemset is closed or not when an old
transaction leaves the current sliding window: When the number
of the transactions with same itemset of X is equal to zero, if Y is
a subset of X, and Y is a closed itemset in the original transaction
set, we need to check whether Y is currently closed or not. Below,
we prove why we only need to check for closed itemsets in the
above condition.

When a transaction t, containing a set of items X, is deleted
from the current sliding window, the number of transactions with
the same itemsets of X is either greater than or equal to zero.
Below, we discuss the update and maintenance rules under these
two conditions.

In the following proof, we assume X and Y are itemsets, T1
is the original set of transactions, T2 is the set of transactions
after itemset X leaves, CT1(X) is X’s closure within transaction
set T1, and CT2(Y) is Y’s closure under transaction set T2.
Case 1: When the number of the transactions with the same
itemset X is greater than zero
When the number of transactions with the same itemset X is
greater than zero, we have the following Lemma 9. From this
lemma, we know that Y’s closure does not change when the
number of transactions with the same itemset X is greater than
zero. That is to say that if Y is an unclosed itemset before X
leaves, Y will remain unclosed after X leaves; and if Y is a closed
itemset before X leaves, Y will remain closed after X leaves.
Lemma 9 Given T2 = T1 \ {X}, {X} ⊂ T2, we have CT2(Y) =
CT1(Y).
Case 2: When the number of transactions with the same
itemset X is equal to zero
When the number of transactions with same itemset of X is equal
to zero, {X} ⊄ T2, we discuss according to the following two sub
conditions: Y is not a subset of X and Y is a subset of X.
Case 2.A: When Y is not a subset of X
If Y is not a subset of X, we have the following Lemma 10. In this
lemma, we prove that when {X} no longer exists in transaction
set T2, Y is not a subset of X and Y’s closure does not change in
transaction set T2.
Lemma 10 Given T2 = T1 \ {X}, if {X} ⊄ T2, Y ⊄ X, Y ≠ X,
then CT2(Y) = CT1(Y).
Case 2.B: When Y is a subset of X
If Y is a subset of X, we discuss according to the following sub
conditions: Y is a closed itemset in transaction set T1 and Y is not
a closed itemset in transaction set T1.
Case 2.B.1: When Y is a closed itemset
When Y is a closed itemset in the transaction set T1, that is to say
when Y ⊆ X, CT1(Y) = Y, we need to perform the closure check,
which we will discuss further in Section 3.3.2.
Case 2.B.2: When Y is not a closed itemset
When Y is not a closed itemset in transaction set T1, we have the
following Lemma 11. In this lemma, we prove that when Y is a
subset of X, Y is not a closed itemset in transaction set T2.

Lemma 11 Given T2=T1\{X}, if Y⊂ X, CT1(Y)⊂Y, then
CT2(Y)⊂ Y.

From the above discussion, we can see that when an old
transaction leaves the current sliding window, for most cases, the
DIU tree structure does not change and we need to update only
the associated supports, which thus reduces the update costs.
There is only one case in which we need to perform the closure
check: when {X} ⊄ T2, Y ⊆ X, and CT1(Y) = Y. We will discuss
how to check for closed itemsets in the following section.

3.3.2 Closure Checking for Deletion
The CFI-Stream algorithm checks whether an itemset is closed or
not on the fly and incrementally updates the DIU tree based on
the previous mining results with one scan of data streams. Below,
we discuss the checking procedure for the deletion operation. In
the following Theorem 2, we show that for any itemset Y, if Y ⊆
X, CT1(Y) = Y, {X} ∉ T2, then we can always find CT2(Y) in the
original closed itemsets.
Theorem 2 For any itemset Y, if Y⊆X, CT1(Y)=Y, {X}∉ T2,
then CT2(Y)∈ CT1. That is to say, we can always find CT2(Y) in
CT1.

In the following Lemma 12, we prove that when Y is a
subset of X, {Y} ∈ T2. Y is a closed itemset in transaction set T2.
Lemma 12 For any itemset Y, if Y ⊂ X, {Y} ∈ T2, we have
CT2(Y) = Y.
 From the above discussion, we can see that in the condition
that we need to perform the closure checking for the deletion
operation, if {Y} ∈ T2, the Y is closed in the new transaction set
T2. Below we show how we perform the closure check when {Y}
∉ T2, and to see if Y is a closed itemset in transaction set T2 after
X leaves.
Corollary 3 If Y ⊆ X, {Y} ∉ T2, for all u1, u2, …, ui, …, un
which satisfies CT2(ui) = ui , Y ⊂ ui, and CT2(Y) = u1 ∩ u2 ∩ …∩
ui ∩ …∩ un..

From Corollary 3, we derive a way to check Y’s closure: if
CT2(Y) = u1 ∩ u2 ∩ …∩ ui ∩ …∩ un = Y, then Y is a closed
itemset. We use this rule to perform the closure checking in the
CFI-Stream algorithm on the fly when old itemsets leave the
current sliding window.

3.4 The Algorithm
Based on our discussions in Sections 3.2 and 3.3, we derive an
algorithm to perform online checking for closed itemsets over
data streams. The CIF-Stream algorithm performs an addition
operation when a new transaction arrives and a deletion operation
when an old transaction leaves the current sliding window. By
performing the addition and deletion operations, the CFI-Stream
algorithm checks each itemset in the transaction on the fly and
updates the associated closed itemsets’ supports. Current closed
itemsets are maintained and updated in real time in the DIU tree.
The closed frequent itemsets can be output any time at the user’s
request by traversing the DIU tree.

Algorithm 1 illustrates the addition procedure when an
itemset X arrives. It first checks if X is in the current closed
itemsets set C. If X is in C, it updates X’s support, and for all X’s
subsets Y belonging to C, it updates Y’s supports (lines 3 to 8).
Otherwise, if X is not in C and X has been included by at least
one transaction in the original transaction set, it checks whether it
is a closed itemset for itself and all its subsets (lines 9 to 36); and
it updates the associated supports for all the closed itemsets (lines

595

Research Track Poster

37 to 40). If X is a newly arrived closed itemset and does not exist
in the DIU tree, the algorithm adds it as a new node to the DIU
tree (lines 27 to 31). Otherwise, if X is the added transaction
itself, it adds X into the closed itemset (lines 10-15); if X is the
subset of added transaction, a closure checking is performed (lines
16-24). In the following algorithm description, X and Y represent
itemsets, Xs and Ys represent X’s support and Y’s support, Len(X)
represents the length of the itemset X, which is the number of
items in an itemset X, C represents the original closed itemsets in
the DIU tree, and Cnew represents new closed itemsets in the DIU
tree after itemset X arrives.

Algorithm 1 CFI-Stream – Addition

1: X_close = true; Cnew = φ;
2: procedure Add(X, C, Cnew)
3: if (X ∈ C)
4: for all (Y ⊆ X and Y ∈C)
5: Ys support(Y, C) + 1;
6: end for
7: if (X_close = true) return;
8: else
9: if (support(X, C) > 0)
10: if(Cnew = φ)
11: X0 X;
12: Cnew X;
13: X_close = false;
14: Xs support (X, C) + 1;
15: else
16: Xc = φ;
17: for all (K ⊃ X and K ∈ C)
18: if (len(K)<len(M) then M=K;
19: end for
20: Xc M;
21: if ((Xc/X) ∩ X0 = φ and Xc ≠ φ)
22: Cnew Cnew ∪ X;
23: Xs support(X, C) + 1;
24: end if
25: end if
26: else
27: if (Cnew = φ) then
28: X0 X;
29: Cnew X;
30: Xs = 1;
31: end if
32: end if
33: end if
34: for all (m ⊂ X and Len(m) = Len(X)-1
35: call Add(m, C, Cnew);
36: end for
37: if (X = X0)
38: C C ∪ Cnew;
39: support(X, C) = Xs;
40: end if
41: end procedure

Algorithm 2 illustrates the procedure to perform the deletion
operation when an itemset X leaves the current sliding window.
CFI-Stream first checks if X is in the current closed itemsets set C
and its count is greater or equal to two; if so, it updates X’s
support and X’s subsets’ support belonging to C (lines 3 to 6).
Otherwise, it checks the itemset X and all its subsets which are in

the current closed itemset C to see whether they are still closed
itemsets (lines 8 to 26) and updates the support for all its subsets
that are in the current closed itemsets (lines 28 to 29). If the
subset Y exists in transaction, Y should keep closed (lines 11-13).
Otherwise a closure check for the subset Y is performed (lines 14-
22). In the following figure, Cobsolete represents the itemsets that
are no longer closed after transaction {X} leaves.
Algorithm 2 CFI-Stream – Deletion

1: Cobsolete = φ;
2: procedure Delete (X, C, Cobsolete)
3: if (count(X) ≥ 2) then
4: for all (Y ⊆ X and Y ∈C)
5: Ys support(Y, C) – 1;
6: end for
7: else
8: length = Len(X);
9: for all (len≥1)
10: for all (Y ⊆ X and Y ∈C and Len(Y) = length)
11: if (count(Y) ≥2) then
12: Ys support(Y, C) – 1;
13: else
14: M = I;
15: for all (U ⊃ Y and U ∈C)
16: M = M ∩ U;
17: end for
18: if (M = Y) then
19: Ys support(Y, C) – 1;
20: else
21: Cobsolete= Cobsolete ∪ Y;
22: end if
23: end if
24: end for
25: length = length-1;
26: end for
27: end if
28: C C \ Cobsolete
29: support(Y, C) = Ys;
30: end procedure

4. PERFORMANCE EVALUATION
We compare our algorithm with Moment [4], which is the state-
of-the-art algorithm to mine closed itemsets in data streams. For
performance evaluation, the synthetic datasets T10.I6.D100K and
T5.I4.D100K-AB are used. Each dataset is generated by the same
method as described in [1], where the three numbers of each
dataset denote the average transaction size (T), the average
maximal potential frequent itemset size (I) and the total number
of transactions (D), respectively. In all experiments, the
transactions of each dataset are looked up one by one in sequence
to simulate the environment of an online data stream.

Figure 2 shows the average processing time for Moment and
CFI-Stream over the 100 sliding windows under different
minimum supports for the dataset T10.I6.D100K. As the
minimum support decreases, the running time for Moment
increases, since the number of closed frequent itemsets and the
boundary nodes increases. For CFI-Stream, the running time is
independent of the support information since it discovers and
maintains all closed itemsets in the DIU tree. As the number of
closed itemsets that exists in the DIU tree increases, they do not
need to be reprocessed; only their supports need to be updated

596

Research Track Poster

incrementally, therefore less processing time is needed per
transaction. Also we can see from Figure 2 that CFI-Stream runs
much faster than Moment when the support threshold is relatively
low, because the number of boundary nodes stored in the data
structure of Moment increases when the support threshold drops;
as the number of nodes to be processed and checked for node
property increase, execution time increases. When the support
threshold is relatively high, these two algorithms have comparable
running time. Moment runs a little faster than CFI-Stream as the
threshold increases. This is because as the threshold creases, the
number of the boundary nodes in Moment decreases, while CFI-
Stream processes the same number of all the closed itemsets
independent of support information. This is especially beneficial
when users have different specified support thresholds in their
online queries.

Figure 2. Runtime performance (T10.I6.D100K)

Figure 3 shows the memory usage in terms of the maximum
number of itemsets of Moment and CFI-Stream for the dataset
T10.I6.D100K. The memory usage for Moment increases when
the minimum support decreases. This is because the number of
itemsets it keeps track of increases. The memory usage remains
almost the same when the support changes in CFI-Stream. This is
because CFI-Stream stores all closed itemsets in the DIU tree
independently of the support information. The overall memory
usage is proportional to the number of closed itemsets in the
dataset. Also we can see from the figure that CFI-Stream
consumes much less memory space than Moment when the
support threshold is low, because when the user defined support
threshold is small, the number of nodes it maintains in the
memory increases dramatically, which includes all the infrequent
gateway nodes, unpromising gateway nodes, intermediate nodes,
and closed nodes. As the support threshold increases, the memory
usage of Moment drops. These two algorithms consume almost
the same amount of memory space. Moment takes slightly a
smaller amount of memory space than CFI-Stream. This is
because CFI-Stream stores all closed itemsets in the DIU tree so
that the frequent closed itemsets can be output based on any user-
specified thresholds in real time. We can see that CFI-Stream is
especially efficient for dense datasets in which the ratio between
the number of frequent closed itemsets and the corresponding
number of frequent itemsets is large.

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6

The Minimum Support (%)

N
um

be
r

of
 It

em
se

ts
 (x

10
00

00
0)

Moment
CFI-Stream

Figure 3. Memory usage (T10.I6.D100K)

5. CONCLUSIONS
In this paper we proposed a novel algorithm, CFI-Stream, to
discover and maintain closed frequent itemsets in the current data
stream sliding window. The algorithm offers an incremental
method to check and maintain closed itemsets online. All closed
frequent itemsets in data streams can be output in real time based
on users’ specified thresholds. Our performance studies show that
this algorithm is able to mine data streams online with both time
and space efficiency independent of support information, and it
can adapt to the concept-drifting in data streams. Experimental
results show that our method can achieve better performance than
a representation algorithm for the state-of-the-art approaches in
terms of both time and space overhead, especially when the
minimum support is low, and the dataset is dense. In the future,
we plan to extend our proposed algorithm to different data stream
applications.

6. ACKNOWLEDGMENTS
This work is partially supported by (while serving at) NSF, the
NASA grant No. NNG05GA30G, and the DoD-OSU grant. We
thank Dr. Yun Chi at the University of California for providing us
the Moment algorithm source code.

7. REFERENCES
[1] R. Agrawal, R. Srikant; Fast algorithms for mining association rules;

Int'l Conf. on Very Large Databases; September 1994.
[2] J. H. Chang, W. S. Lee, A. Zhou; Finding recent frequent itemsets

adaptively over online data streams; ACM SIGKDD Int'l Conf. on
Knowledge Discovery and Data Mining; August 2003.

[3] J. H. Chang, W. S. Lee; A sliding window method for finding
recently frequent itemsets over online data streams; Journal of
Information Science and Engineering; July 2004.

[4] Y. Chi, H. Wang , P. S. Yu , R. R. Muntz; Moment: Maintaining
closed frequent itemsets over a stream sliding window; Int'l Conf. on
Data Mining; November 2004.

[5] C. Giannella, J. Han, J. Pei, X. Yan, P. S. Yu; Mining frequent
patterns in data streams at multiple time granularities; Data Mining:
Next Generation Challenges and Future Directions, AAAI/MIT;
2003.

[6] S. Guha, N. Koudas, K. Shim; Data streams and histograms; ACM
Symposium on Theory of Computing; 2001.

[7] H. Li, S. Lee, and M. Shan; An efficient algorithm for mining
frequent itemsets over the entire history of data streams; Int'l
Workshop on Knowledge Discovery in Data Streams; Sept. 2004.

[8] C. Lin, D. Chiu, Y. Wu, A. L. P. Chen; Mining frequent itemsets
from data streams with a time-sensitive sliding window; SIAM Int'l
Conf. on Data Mining; April 2005.

[9] C. Lucchese, S. Orlando, and R. Perego; Fast and memory efficient
mining of frequent closed itemsets; Knowledge and Data
Engineering, IEEE Transactions; January 2006.

[10] G. S. Manku, R. Motwani; Approximate frequency counts over data
streams; Int'l Conf. on Very Large Databases; 2002.

[11] J. Pei, J. Han, and R. Mao; Closet: An efficient algorithm for mining
frequent closed itemsets; ACM SIGMOD International Workshop on
Data Mining and Knowledge Discovery, May 2000.

[12] J. Pei, J. Han, and J. Wang; Closet+: Searching for the best strategies
for mining frequent closed itemsets; ACM SIGKDD Int'l Conf. on
Knowledge Discovery and Data Mining, August 2003.

[13] M. J. Zaki and C. J. Hsiao; Charm: An efficient algorithm for closed
itemsets mining. SIAM Int'l Conf. on Data Mining; April 2002.

0.01

0.1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6
The Minimum Support (%)

R
un

ni
ng

 T
im

e
(s

ec
)

Moment
CFI-Stream

597

Research Track Poster

